On-farm yield response of chickpea \([Cicer arietinum (L)]\) to inoculation and phosphorus fertilizer application, at Damote Gale district in Ethiopia

Joint Pan-African Grain Legume and World Cowpea Conference
AVANI Victoria Falls Resort and Conference Center
28 February to 4 March 2016
Livingstone, Zambia,

By:
Endalkachew Wolde-meskel and Team
Introduction

Chickpea, *Cicer arietinum* (L.)

- World’s 3rd most important food legume next to common bean and soybean
- Widely cultivated pulse crop by smallholders of the semi-arid tropics
Introduction
Putting nitrogen fixation to work for smallholder farmers in Africa

Why chickpea

Major African chickpea producing countries & their share of total production (FAOSTAT 2011)

Total production volume (in 10^5 tons) for eight selected grain legumes (CSA 2013)
Putting nitrogen fixation to work for smallholder farmers in Africa

...Why chickpea

Export share of 346 million US$ in 2013 (ERCA, 2013)

BNF of a number of legumes (CGIAR, 2012)

- Common bean: 60%
- Chickpea: 18%
- Soybean: 11%
- Faba bean: 60%

Export share of 346 million US$ in 2013 (ERCA, 2013)
…Why chickpea

Major Dietary Protein

Nutritious chickpea products

Putting nitrogen fixation to work for smallholder farmers in Africa
Constraints

- Important crop, BUT low productivity:
 - Average yield in Ethiopia = 1.5 t/ha
 - Potential yield: 3 ton ha⁻¹

- Main Constraint
 - Poor soil fertility (low N & P availability)

Table 1. Average nutrient balance of N, P and K (kg/ha/yr) of the arable land for some East and southern African countries (after Stoorvogel et al., 1993)

<table>
<thead>
<tr>
<th>Country</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>N</th>
<th>P</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botswana</td>
<td>0</td>
<td>−2</td>
<td>−1</td>
<td>0</td>
<td>−7</td>
<td>−26</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>−41</td>
<td>−47</td>
<td>−6</td>
<td>−7</td>
<td>−26</td>
<td>−32</td>
</tr>
<tr>
<td>Kenya</td>
<td>−42</td>
<td>−46</td>
<td>−3</td>
<td>−1</td>
<td>−29</td>
<td>−36</td>
</tr>
<tr>
<td>Malawi</td>
<td>−68</td>
<td>−67</td>
<td>−10</td>
<td>−10</td>
<td>−44</td>
<td>−48</td>
</tr>
<tr>
<td>Rwanda</td>
<td>−54</td>
<td>−60</td>
<td>−9</td>
<td>−11</td>
<td>−47</td>
<td>−61</td>
</tr>
<tr>
<td>Tanzania</td>
<td>−27</td>
<td>−32</td>
<td>−4</td>
<td>−5</td>
<td>−18</td>
<td>−21</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>−31</td>
<td>−27</td>
<td>−2</td>
<td>−2</td>
<td>−22</td>
<td>−26</td>
</tr>
</tbody>
</table>

Inorganic fertilizer?
Biological Nitrogen fixation

- BNF reduces dependence on mineral N fertilizer

Fig.: Symbiotic effectiveness of selected indigenous isolates on Chickpea, 45 days
On farm trials conducted in Southern Eth (45 farmer’s plots)

Objectives:

- Determine rhizobial population size compatible to Chickpea, MPN
- Examine effects of +I, +P and +I+P on yield and yield components of chickpea in two different soil types, black and red soils
- Across farm response variations to the treatments

<table>
<thead>
<tr>
<th>Soil type</th>
<th>PH</th>
<th>OC (%)</th>
<th>TN (%)</th>
<th>Av. P (mg/Kg)</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>6.7</td>
<td>0.96</td>
<td>0.09</td>
<td>13</td>
<td>Clay loam</td>
</tr>
<tr>
<td>Black</td>
<td>6.4</td>
<td>1.4</td>
<td>0.12</td>
<td>23</td>
<td>Loam</td>
</tr>
</tbody>
</table>
On farm trial conducted in Southern Eth.

Inoculation with Rhizobium (I) and Phosphorous fertilization (P)

- **T1**
 - Improved Seed
 - without inputs

- **T2**
 - Improved seed with
 - inoculation only

- **T3**
 - Improved seed with P

- **T4**
 - Improved seed with
 - inoculation & P

Observations:
- MPN, Growth and Yield, Symbiotic effectiveness, N Content, HH economic benefits
Results

Tab. 2: Rhizobial population size (g⁻¹ of soil), MPN, in black and red soils at some farms in the study area

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Farm number</th>
<th>Rhizobia Population (g⁻¹ of soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Black</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Black</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Black</td>
<td>20</td>
<td>< 10</td>
</tr>
<tr>
<td>Red</td>
<td>4</td>
<td>< 10</td>
</tr>
<tr>
<td>Red</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Red</td>
<td>13</td>
<td>< 10</td>
</tr>
<tr>
<td>Red</td>
<td>17</td>
<td>< 10</td>
</tr>
</tbody>
</table>

- The low rhizobia population number warrants response to inoculation
Results

Soil types affect nodulation, growth, and yield of chickpea (*Cicer arietinum* L.) (n=40)

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Nodule score PP at 23 DAS</th>
<th>Plant ht. (cm)</th>
<th># of branches PP</th>
<th># pods PP</th>
<th>Days to maturity</th>
<th>Yield (t/ha)</th>
<th>Grain</th>
<th>T. biomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black soil</td>
<td>3.1<sup>a</sup></td>
<td>46<sup>b</sup></td>
<td>11<sup>b</sup></td>
<td>56<sup>b</sup></td>
<td>108<sup>b</sup></td>
<td>2.0<sup>a</sup></td>
<td>4.3<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Red soil</td>
<td>3.6<sup>b</sup></td>
<td>38<sup>a</sup></td>
<td>9<sup>a</sup></td>
<td>44<sup>a</sup></td>
<td>98<sup>a</sup></td>
<td>1.8<sup>a</sup></td>
<td>3.8<sup>a</sup></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Means followed by the same letter(s) in a column are not significantly different at P = 0.05 (Duncan's Multiple Range Test).

Rhizobium inoculation and/or Phosphorus fertilization improves nodulation in chickpea.
Putting nitrogen fixation to work for smallholder farmers in Africa

Results

- Rhizobium inoculation and/or phosphorus fertilization affects the phenology and growth of Chickpea (*Cicer arietinum* L.)(n = 20)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>SFWt at 45 DAS (g/plant)</th>
<th>Days to maturity</th>
<th># Branches</th>
<th>Plant height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.0<sup>a</sup></td>
<td>101<sup>a</sup></td>
<td>8<sup>a</sup></td>
<td>40<sup>a</sup></td>
</tr>
<tr>
<td>Inoculation</td>
<td>8.4<sup>b</sup></td>
<td>104<sup>c</sup></td>
<td>10<sup>b</sup></td>
<td>43<sup>b</sup></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>8.5<sup>bc</sup></td>
<td>103<sup>b</sup></td>
<td>10<sup>bc</sup></td>
<td>42<sup>b</sup></td>
</tr>
<tr>
<td>Inoculation + P</td>
<td>9.0<sup>c</sup></td>
<td>104<sup>c</sup></td>
<td>11<sup>c</sup></td>
<td>43<sup>b</sup></td>
</tr>
</tbody>
</table>

Effects of Inoculation & Phosphorus on Chickpea Grain yield in different cropping seasons, Damot Gale, Ethiopia (n=20 ;45)

![Graph showing chickpea grain yield with P and/or I (t/ha) for 2012 and 2014]
...Results

Total biomass yield (t/ha) of chickpea as affected by Inoculation & Phosphorus fertilization, Damot Gale, Ethiopia

![Chart showing total biomass yield with and without P and I treatments.]

Chickpea straw total N uptake (Kg/ha) & total nitrogen content (STN, %) as influenced by Inoculation & P fertilizer

![Chart showing chickpea straw total N uptake and content with and without P and I treatments.]

Cattle feeding chickpea residues, Damot Gale, Wolyta, SNNPRS

Putting nitrogen fixation to work for smallholder farmers in Africa
on the majority of farms (>80%) positive effects due to inoculation

Farmers are missing out the benefit of applying P with out N being sufficient
Inoculation is strongly recommended to improve the productivity of chickpea in this area (*Rhizobium* concentrations of \(<10^2 \text{ g}^{-1}\) of soil are insufficient to establish effective symbiosis).

Application of I, P, and I+P increased grain yield by 26%, 19% and 33% respectively.

Assuming a ¼ ha chickpea plot, each household will benefit 63, 33, and 63 USD for I, P and I+P, respectively.

However, lack of efficient input supply and output market access are important constraints.
Central Partnership Cluster for Chickpea

- Designing & Facilitation of partnerships
- Technical support
- M&E
- Grants & leverage resources

- Evidence generation
- M&E, communication
- Technical support
- Develop extension materials
- Liaise with other VC partners

- Trainings on legume business, accounting & financing
- Support technology dissemination,
- Facilitate the use of MIS,

- Supply inoculants
- Trainings on inoculant applications, handling, storage & distribution
- Multiply effective strains

- Grain buyer,
- Seed access (ACOS variety)
- Support trainings on grain quality & grading
Thank You
Putting nitrogen fixation to work for smallholder farmers in Africa
Putting nitrogen fixation to work for smallholder farmers in Africa
Putting nitrogen fixation to work for smallholder farmers in Africa

BNF of a number of legumes (CGIAR, 2012)

Protein provided by legumes per US$ (Monitor Group, 2012)