Pea weevil (Bruchus pisorum L.) threatens field pea production in Ethiopia: Prospects of integrated pest management (IPM)

Esayas Mendesil1, Birgitta Rämert2, Peter Anderson2, Ylva Hilbur3

1Jimma University, Jimma, Ethiopia
2Swedish University of Agricultural Sciences, Alnarp, Sweden
3International Institute of Tropical Agriculture, Ibadan, Nigeria
Field pea is the second most important grain legume crop in Ethiopia, after faba bean.

Key role in cropping system.

Production trend of field pea over a ten year period from 2000 - 2013
• Insect pests main production constraint

• Pea weevil, *Bruchus pisorum* – key pest
Global distribution of pea weevil
(Source: Plantwise (2014), CABI)
Plant resistance in field pea genotypes
Mean percent seed damage at Ebinat, Liben and Sekota for 487 accessions in first field trial

<table>
<thead>
<tr>
<th>Sites</th>
<th>Number of accessions</th>
<th>Percent seed damage</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Sekota<sup>a</sup></td>
<td>487</td>
<td>0.00</td>
<td>90.00</td>
</tr>
<tr>
<td></td>
<td>EIB accessions</td>
<td>442</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Newly collected populations</td>
<td>38</td>
<td>4.17</td>
</tr>
<tr>
<td></td>
<td>Released varieties</td>
<td>7</td>
<td>13.33</td>
</tr>
<tr>
<td>Liben<sup>b</sup></td>
<td>487</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>EIB accessions</td>
<td>442</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Newly collected populations</td>
<td>38</td>
<td>27.50</td>
</tr>
<tr>
<td></td>
<td>Released varieties</td>
<td>7</td>
<td>49.17</td>
</tr>
<tr>
<td>Ebinat<sup>c</sup></td>
<td>487</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>EIB accessions</td>
<td>442</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Newly collected populations</td>
<td>38</td>
<td>19.18</td>
</tr>
<tr>
<td></td>
<td>Released varieties</td>
<td>7</td>
<td>45.00</td>
</tr>
</tbody>
</table>

Percent seed damage in first field trial

9 accessions with <20 % percent seed damage

4 accessions with >80 % percent seed damage

Neoplasm formation in greenhouse

- 4 genotypes
- Less attacked by weevils
- Heritable trait
- Inhibited by UV light
- Intercropping/shading enhance neoplasm formation in the field
Oviposition of pea weevil
No-choice test

doi: 10.3389/fpls.2015.01186
Dual-choice test: Susceptible vs. moderately resistant genotypes and non-host plants

Total eggs- susceptible combined with: moderately resistant and non-host plants

- Adet + 32410-1
- Adet + 235899-1
- Adet + P. fulvum
- Adet + L. sativus

Mean no. of eggs/female

Scanning electron micrographs of pod surface of field pea and non-host plants

Smallholder farmers' knowledge and management of pea weevil in north and north-western Ethiopia

Mendesil et al. (2016). Crop Protection 81:30–37
Farmers’ knowledge of pea weevil in north and north-western Ethiopia.

- Most of the farmers surveyed were knowledgeable about pea weevil.
- Farmers were able to identify damaged seeds based on common symptoms on infested seeds.
- However, the majority of the farmers considered pea weevil as a storage pest.
- Farmers’ knowledge of PW was positively and significantly predicted by gender, farming experience and membership of cooperatives.
- Farmers reported that pea weevil cause loss of income, shortage of peas for home consumption and seeds for planting.
- Most of the farmers were not aware of means of spreading of pea weevil.

Mendesil et al. (2016). Crop Protection 81:30–37
Conclusions and future prospects

• Most of the field pea accessions evaluated were found to be susceptible

• A few accessions/genotypes demonstrated moderate levels of resistance

• Pea weevil females discriminate between host and non-host genotypes confirming the level of resistance found in the field.

• Pod morphological traits influence oviposition preference.

• Farmers aware of the pea weevil and able to identify damaged seeds

• However, as pea weevil is considered a storage pest most farmers do not apply measures to prevent spread and carryover of the weevil.

• These results can be used in developing IPM strategies based on trap cropping using attractive genotypes and intercropping with non-host plants.
Acknowledgements

Swedish International Development Cooperation Agency

Swedish University of Agricultural Sciences

Addis Ababa University

Adet Agric. Research Centre & Amhara Region Agric. Bureau

The Legume Innovation Lab